

THE 29TH INTERNATIONAL CONFERENCE ON

ADVANCES IN CRITICAL CARE NEPHROLOGY

AKI&CRRT 2024

Jointly Provided by UC San Diego SCHOOL OF MEDICINE CRRT, INC.

MARCH 12-15, 2024

MANCHESTER GRAND HYATT SAN DIEGO, CALIFORNIA

Symposium B - Deresuscitation in the ICU: How to use Diuretics, Ultrafiltration and Dialysis

Ultrafiltration and Diuretic Therapy in Acute Heart Failure

Amir Kazory, MD, FASN, FAHA Division of Nephrology, Hypertension, and Renal Transplantation **University of Florida**

Disclosures

Baxter, Inc. - Cardiology Advisory Board

Daxor, Inc. - Consultant

Elsevier, Inc. - Editorial Fee

Horizon Therapeutics USA, Inc. - Advisory Board

NuWellis, Inc. - Scientific Advisory Board

Relypsa, Inc. - Consultant

W.L. Gore, Inc. - Consultant

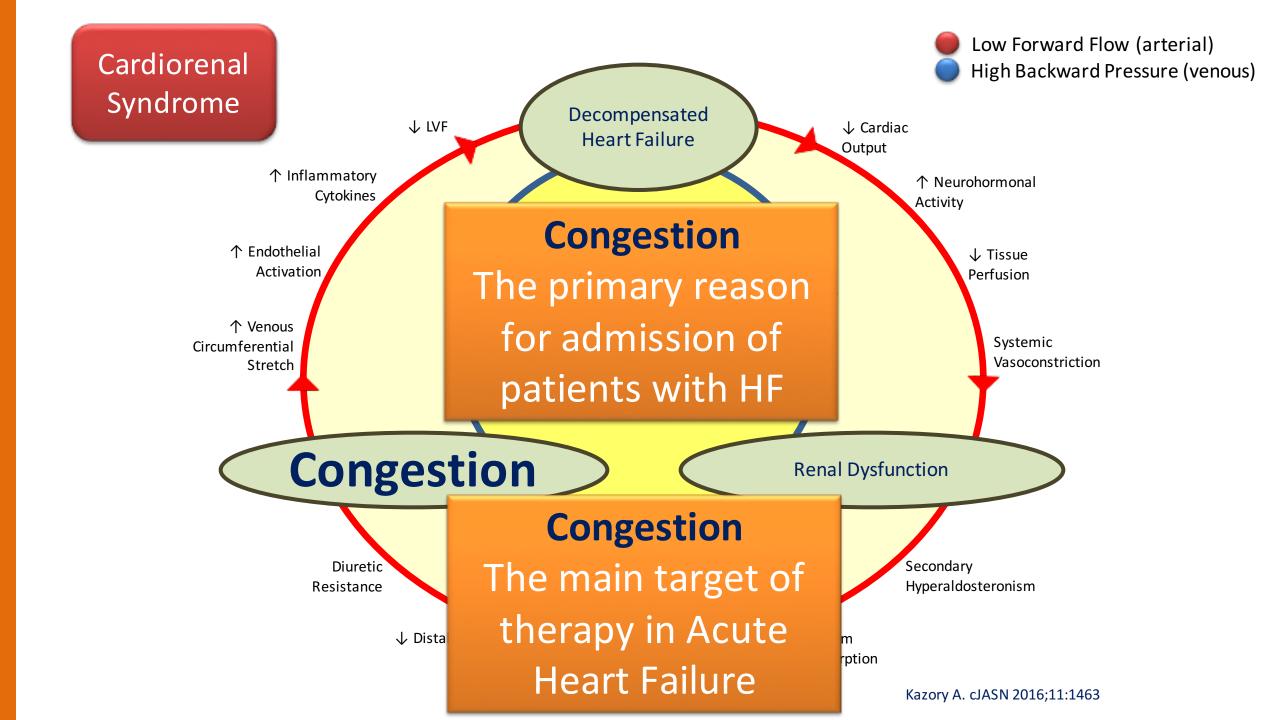
Outline

Congestion and Natriuresis in AHF

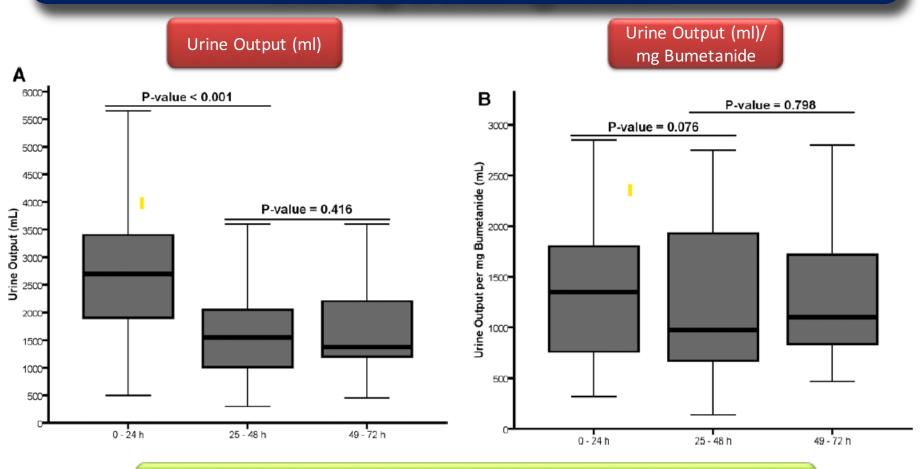
Diuretic Therapy in AHF

Sequential Nephron Blockade

Ultrafiltration for AHF

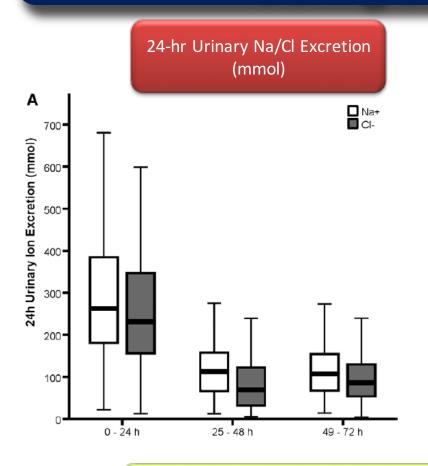

Case

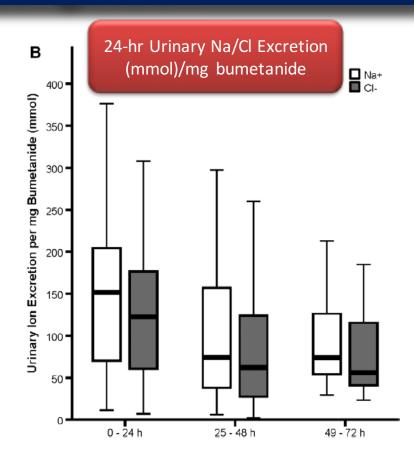
A 65-year-old man with a history of CAD, HTN, HFrEF (EF 35%) is admitted to the Cardiac ICU for progressive dyspnea and a weight gain of 15 lbs over the last 1 month. His BP is 121/56, PR 14, RR 59, T 98.5. His home meds include lisinopril 40 mg/day, furosemide 40 mg BID, and Metorolol XL 50 mg/day. CXR shows pulmonary edema.


He is started on IV furosemide 80 mg BID. The next day, his urine output is 450 ml and the labs show the following: Na 136, K 4.1, Cl 96, Bicarb 29, BUN 22, Creatinine 1.2

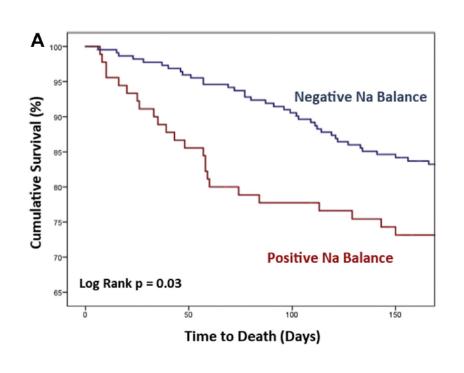
Which of the following is the best next step?

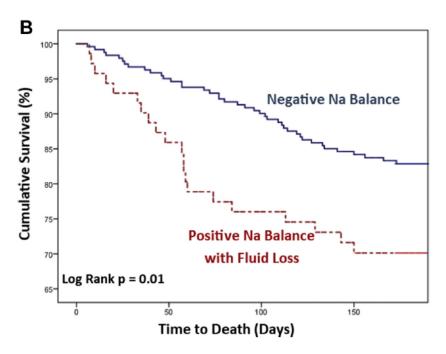
- 1) Check urine sodium
- 2) Add IV acetazolamide 500 mg once daily
- 3) Add Empagliflozin 10 mg once daily
- 4) Start HCTZ 25 mg once daily
- 5) Start ultrafiltration




Natriuresis Declines Rapidly During Decongestion

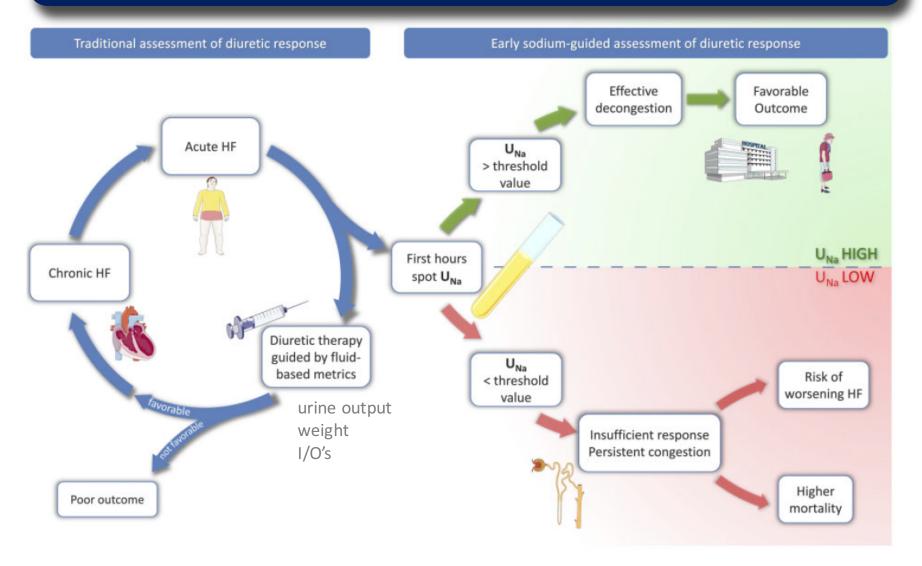
Urine volume does not decline when adjusted for diuretic dose Urine output/mg of bumetanide: 900-1300 ml


Natriuresis Declines Rapidly During Decongestion



Natriuresis does decline even after adjustment for diuretic dose Urine sodium/mg of bumetanide: 75-150 mmol

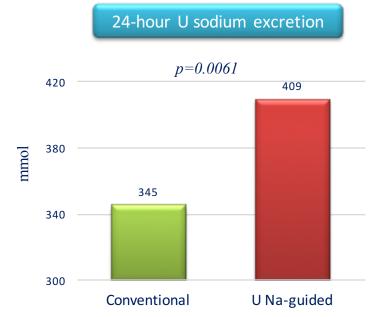
Natriuretic Response and Survival



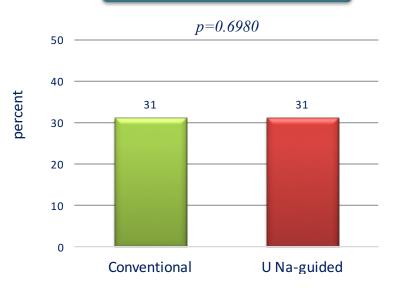
2 g/day sodium diet

A positive sodium balance is associated with an increased risk of death, even in the presence of negative fluid balance

Natriuresis-Guided Therapy in AHF

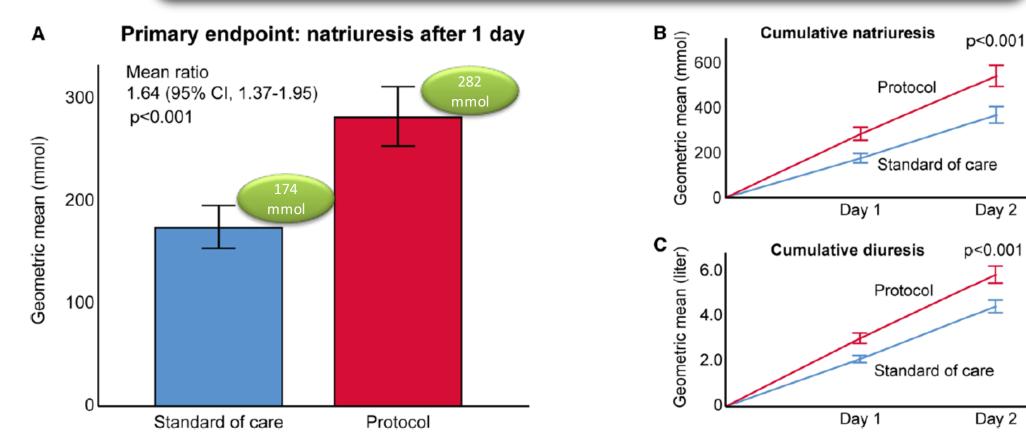

Natriuresis-Guided Therapy in AHF

Name	Clinical Trial Identifier	Expected Number of Patients	Design	Intervention arm	Control arm	Primary Endpoint
PUSH-HF	NCT04606927	310	RCT	Natriuresis- guided treatment	Standard of care	Total natriuresis after 24 hours, first occurrence of all-cause mortality or heart failure rehospitalization
DECONGEST	NCT05411991	104	RCT	Natriuresis- guided treatment	Standard of care	Mortality, days in hospital, and decongestion
ENACT-HF	NR	454	Multi- national Pragmatic	Natriuresis- guided treatment	Standard of care	Total natriuresis after 24 hours
Collins S.	NCT04481919	484	RCT	Natriuresis- guided treatment	Guideline- based care	Days of clinical benefit (global clinical status, hospital days, and death)


PUSH-AHF Trial

European Society of Cardiology – Amsterdam (Aug 28, 2023)

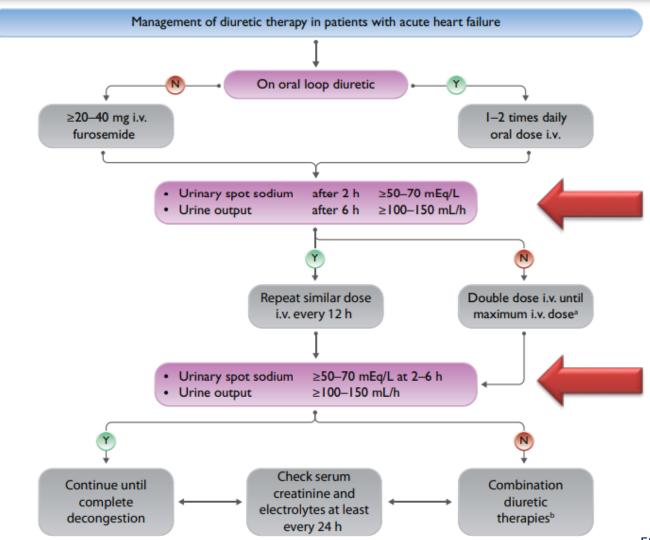
Urinary Sodium-based treatment algoritHm in Acute Heart Failure



Natriuresis during the first 24 hours was significantly higher in the natriuresis guided group, but the combined endpoint of time to all-cause mortality or first HF rehospitalization at 180 d was the same.

310 patients

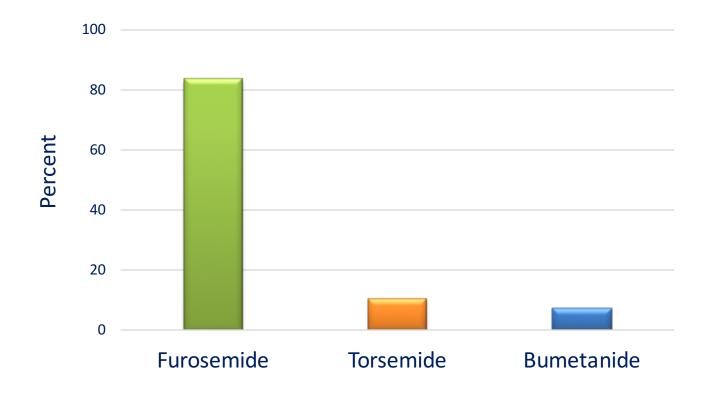
ENACT-HF Trial


Natriuresis and diuresis were significantly higher in the natriuresis guided group, with shorter length of stay

401

patients

Treatment Algorithm for AHF

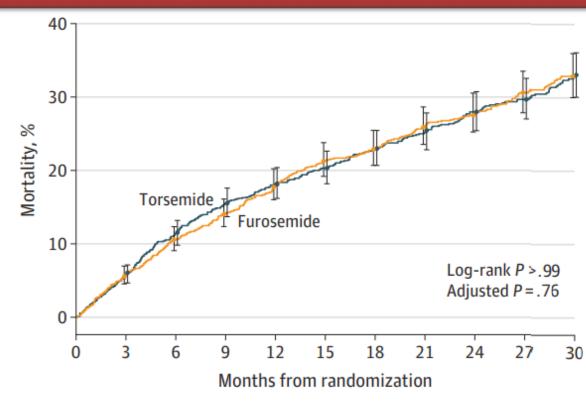

European Society of Cardiology

The maximal daily dose for i.v. loop diuretics is generally considered furosemide 400-600 mg, though up to 1000 mg may be considered in patients with severely impaired kidney function.

3426 patients

Potential Advantages of Torsemide over Furosemide

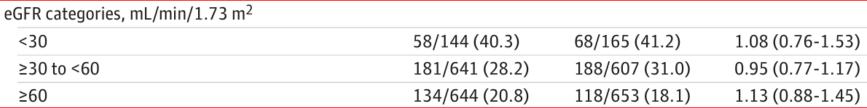
Preclinical data Clinical data


- Improved diuresis
- Decreased kaliuresis
- Decreased aldosterone secretion
- Inhibition of aldosterone receptor*
- Inhibition of Ang II effects
- Improved LV function
- Decreased myocardial collagen
- Increased survival rate

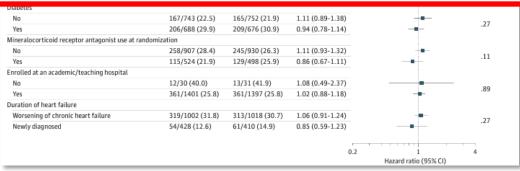
- Improved diuresis and weight reduction
- Decreased transcardiac aldosterone extraction
- Less RAAS activation
- Decreased myocardial collagen
- Decreased levels of PICP† and PIIINP (collagen surrogates)Decreased PCP activity
- Decreased levels of plasma BNP
- Improved LV function
- Improved NYHA class†
- Improved subjective quality of life
- Decreased all-cause‡ and cardiac-associated mortality
- Decreased rates of hospitalization‡
- Decreased length of hospital stay related to HF

TRANSFORM-HF trial

Primary Outcome of All-Cause Mortality

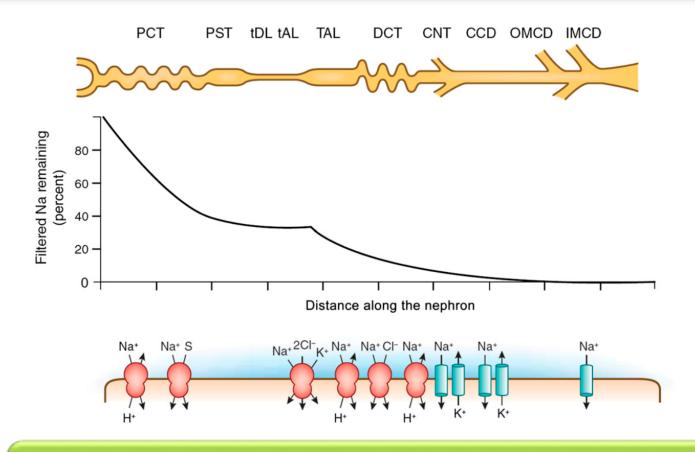

Patients discharged after HF hospitalization Open-label, pragmatic RCT participants hospitalized with HF 60 hospitals in US median follow-up of 17.4 months

No. at risk
Torsemide 1431 1301 1135 1027 904 787 689 661 543 434 317
Furosemide 1428 1295 1151 1036 897 782 707 658 542 428 317


TRANSFORM-HF trial

	Deaths, No./total (%)	Hazard ratio	Favors : Favors	P value for interaction		
Subgroup	Torsemide	Furosemide	(95% CI)	torsemide furosemide			
Overall	373/1431 (26.1)	374/1428 (26.2)	1.02 (0.89-1.18)	-			
Age, y							
<65	119/680 (17.5)	121/663 (18.3)	0.96 (0.75-1.24)	- ≢	.64		
≥65	254/751 (33.8)	253/765 (33.1)	1.04 (0.87-1.23)	-	.04		
<75	249/1083 (23.0)	219/1049 (20.9)	1.12 (0.93-1.34)		.09		
≥75	124/348 (35.6)	155/379 (40.9)	0.86 (0.68-1.09)	- -			
Sex							
Male	244/933 (26.2)	221/871 (25.4)	1.06 (0.88-1.27)	-			
Female	129/498 (25.9)	153/557 (27.5)	0.97 (0.77-1.22)	-	.57		
Race and ethnicity ^a							
Asian	6/37 (16.2)	6/26 (23.1)	1.08 (0.35-3.36)				
Black	98/474 (20.7)	119/494 (24.1)	0.82 (0.63-1.08)		.31		
White	248/831 (29.8)	234/837 (28.0)	1.11 (0.93-1.33)	-			
Other	21/87 (24.1)	15/68 (22.1)	1.23 (0.63-2.39)				
Left ventricular ejection fraction, %							
≤40	239/935 (25.6)	212/901 (23.5)	1.14 (0.94-1.37)	-			
41-49	20/81 (24.7)	21/70 (30.0)	0.80 (0.43-1.48)		25		
≥50	0 84/318 (26.4)		0.88 (0.66-1.17)		.35		
Unknown	30/97 (30.9)	40/127 (31.5)	0.90 (0.56-1.44)				
Loop diuretic prior to index hospitalization							
Furosemide	229/754 (30.4)	227/778 (29.2)	1.08 (0.90-1.30)	-			
Torsemide	53/146 (36.3)	42/113 (37.2)	1.03 (0.69-1.55)		20		
Bumetanide/ethacrynic acid	26/64 (40.6)	23/65 (35.4)	1.32 (0.75-2.32)		.30		
None/unknown	65/467 (13.9)	82/472 (17.4)	0.78 (0.57-1.09)				

2859 patients

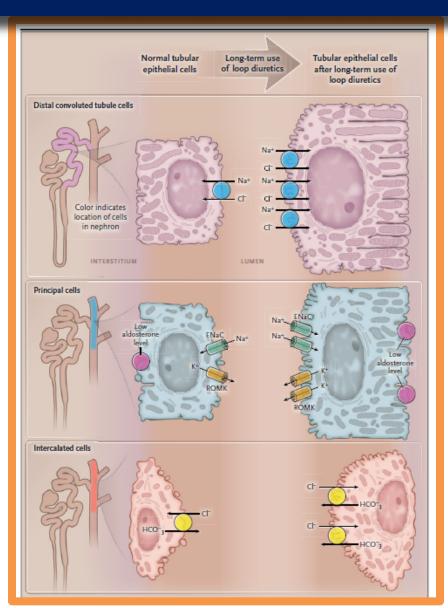


Mentz RJ. JAMA 2023;329:214

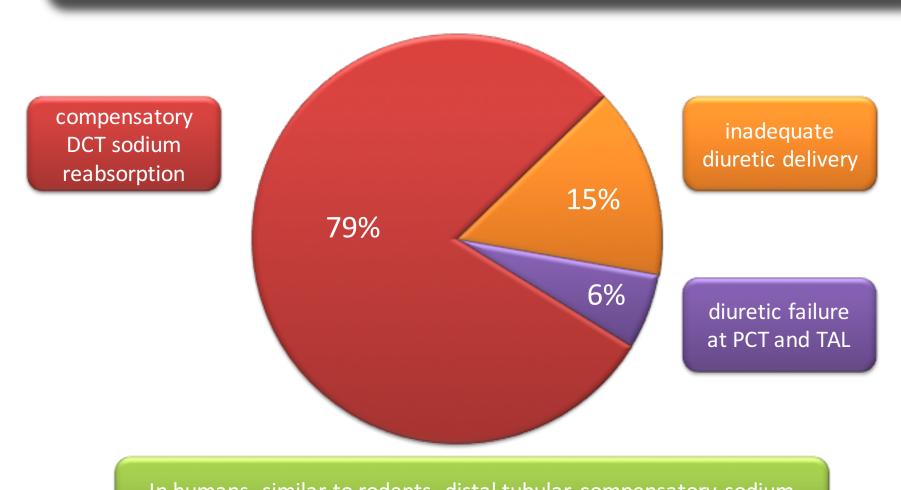
Sodium Transport along the Nephron

(Healthy Individuals)

In healthy individuals, the majority of sodium absorption takes place within proximal tubule and thick ascending limb of loop of Henle


Distal Nephron Remodeling

long-term use of loop diuretics


NCC

ENaC

Pendrin

Diuretic Resistance is Driven by DCT

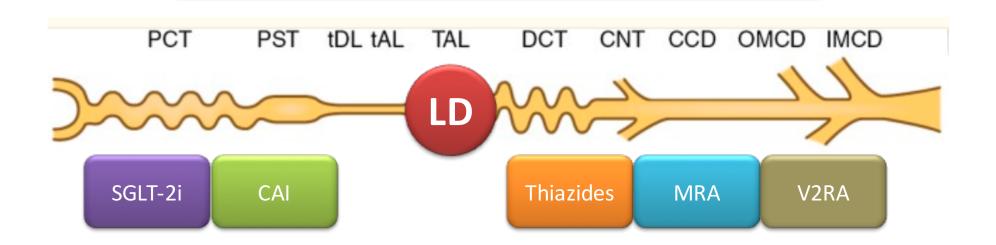
In humans, similar to rodents, distal tubular compensatory sodium reabsorption is a primary driver of DR

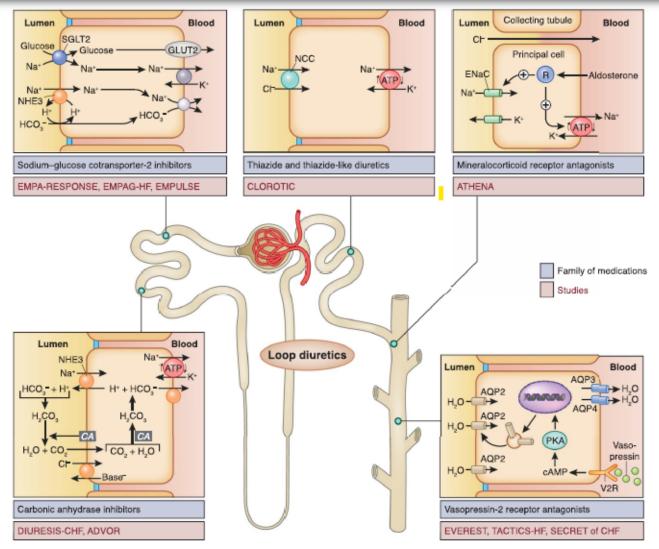
What to do when diuresis/natriuresis is suboptimal?

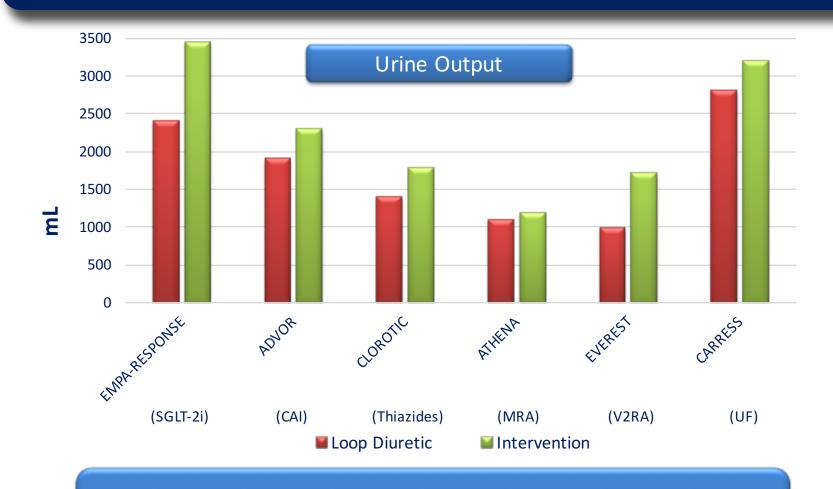
Nesiritide

Dopamine

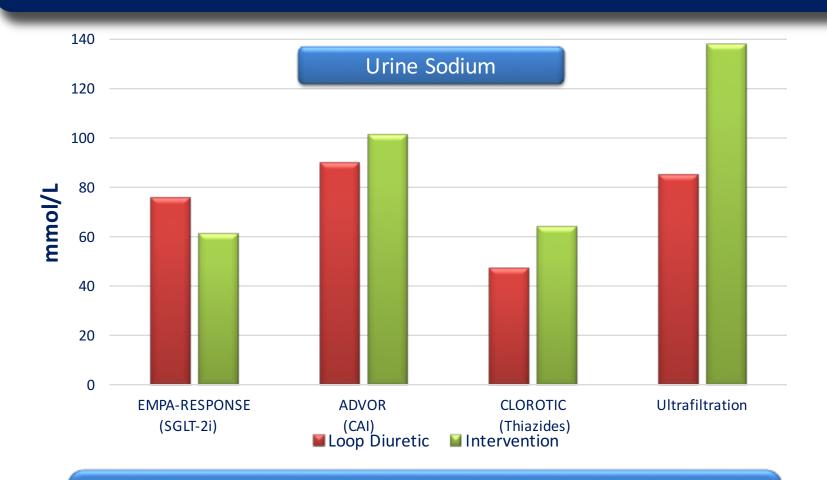
Hypertonic Saline


Sequential Nephron Blockade


Extracorporeal Ultrafiltration


Sequential Nephron Blockade

Sequential Sodium Blockade in 2024



CDT and Urine Volume

The difference in UOP is more pronounced for SGLT-2i and V2RA

CDT and Urine Sodium

The difference in sodium concentration is more pronounced for Thiazides and ultrafiltration

ULTRAFILTRATION

"Practice of UF Therapy":
What did Landmark
Clinical Trials Show?

ADHF – 200 patients

Randomized within 24 hours of admission

Baseline Creatinine 1.5 mg/dl

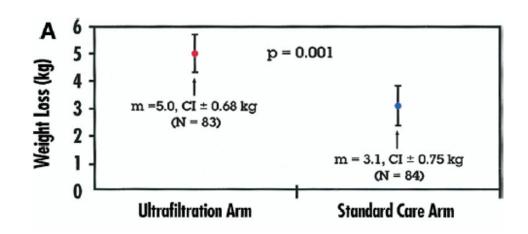
Primary Endpoint: changes in weight

Flexible UF (up to 500 ml/hr)

CARRESS-HF

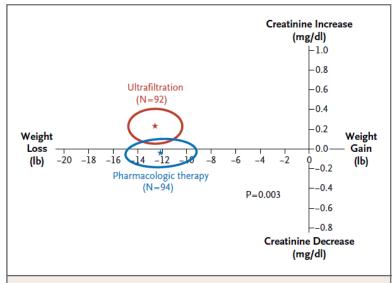
CRS – 186 patients

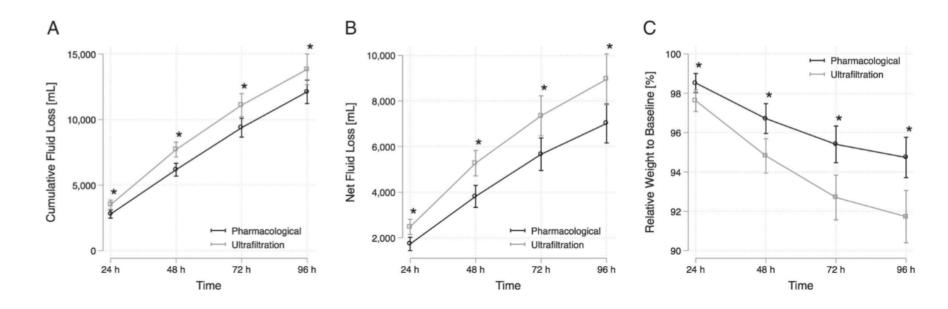
RSC 90 days before to 10 days after admission


Baseline Creatinine 2.0 mg/dl

Primary Endpoint: changes in weight and serum creatinine

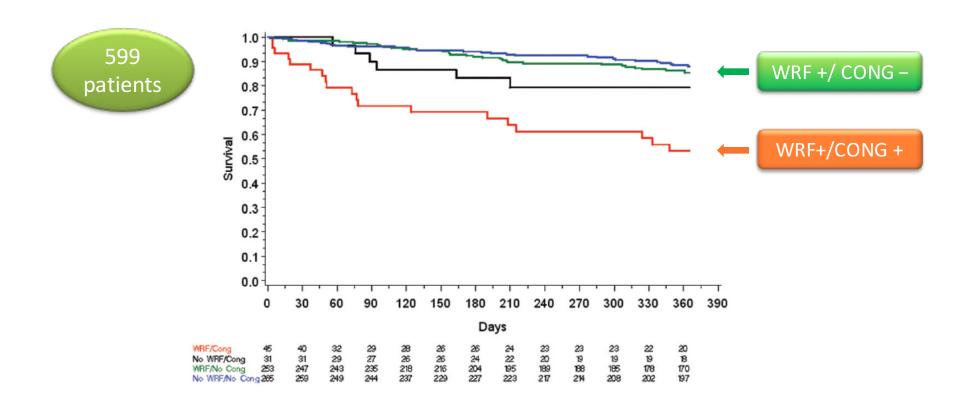
Fixed UFR (200 ml/hr)




Figure 1. Changes in Serum Creatinine and Weight at 96 Hours (Bivariate Response).

Decongestion: UF > DR RSC (WRF): UF = DR

Decongestion: UF = DR RSC (WRF): UF > DR


per-protocol analysis

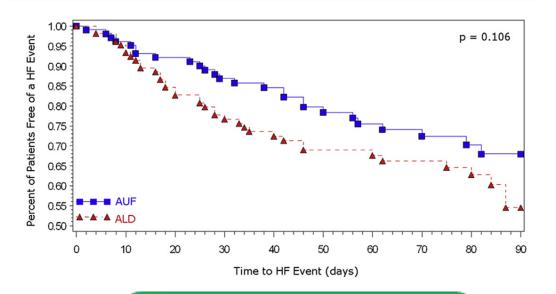
In contrast to the original trial (intention-to-treat), UF was associated with significantly more fluid loss and weight reduction

Decongestion: UF > DR

Interplay of RSC (WRF)-De(Congestion)

Endpoints: 1 year death or urgent transplantation

ADHF – 224 patients


Randomized within 24 hours of admission

Baseline Creatinine 1.5 mg/dl

Time to first HF event within 90 days: Primary Endpoint

Adjustable UF

FIGURE 2 Primary Endpoint: Time to Heart Failure Event after Discharge

Fluid Removal: UF > DR
HF Event: UF < DR
RSC (WRF): UF = DR

Table IV. Treatment guidelines for the aquapheresis arm

General comments:

- 1. Once an initial UF rate is chosen, avoid increasing the UF rate unless there are clear indications to do so.
- 2. Because patients' plasma refill rate usually declines as fluid is removed, it should be expected that UF rate will need to be decreased during the course of therapy.
- A. Choose initial UF rate:

SBP < 100 mm Hg: 150 cc/h

SBP 100-120 mm Hg: 200 cc/h

CDD - 120 mm Hay 250 ca/

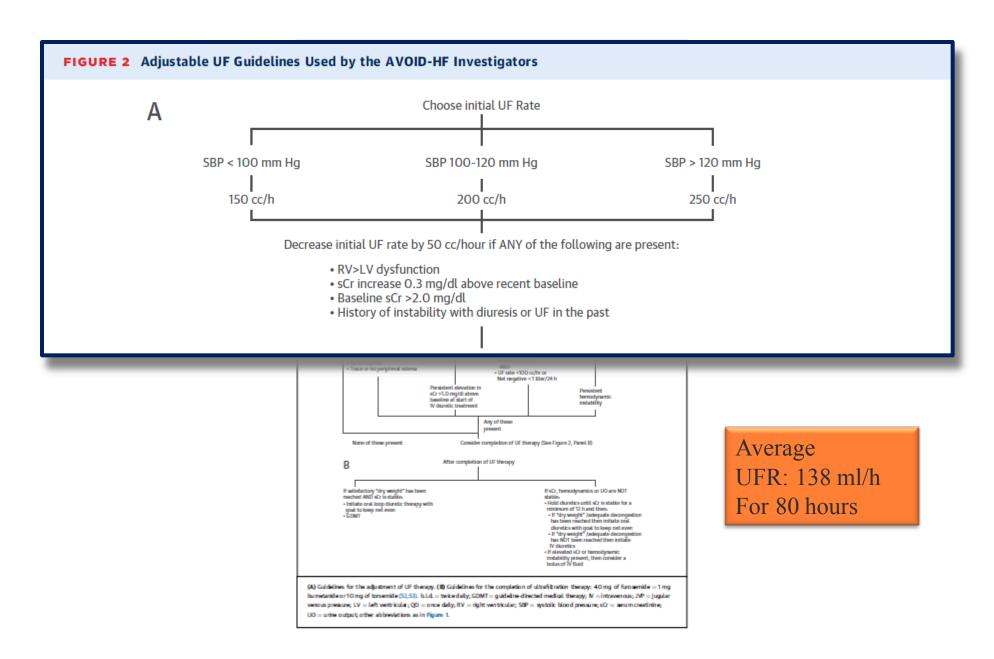
General comments:

- 1. Once an initial UF rate is chosen, avoid increasing the UF rate unless there are clear indications to do so.
- 2. Because patients' plasma refill rate usually declines as fluid is removed, it should be expected that UF rate will need to be decreased during the course of therapy.
- A. Choose initial UF rate:

SBP < 100 mm Hg: 150 cc/h

SBP 100-120 mm Hg: 200 cc/h

SBP > 120 mm Hg: 250 cc/h


- B. Decrease starting UF rate by 50 cc/h if any of the following are present:
 - a. RV > LV systolic dysfunction
 - b. sCr increase 0.3 mg/dL above recent baseline
 - c. Baseline sCr > 2.0 mg/dL
 - d. History of instability with diuresis or UF in the past
- C. Reevaluate UF rate every 6 h:
 - 1. Evaluate recent BP, HR, UO, net intake/output, sCr
- 2. Consider decreasing Aq. by 50 cc/h and checking STAT sCr (unless sent in past 2 h) if:

D. Consider completion of UF therapy It one of the following occurs:

- 1. Resolution of congestion (all of following):
- a. Jugular venous pressure <8 cm H₂O
- b. No orthopnea
- c. Trace or no peripheral edema
- 2. Best achievable dry weight has been reached
- a. Evidence of poor tolerance of fluid removal

AND

- b. UF rate <100 cc/h or net negative <1 L/24 h
- 3. Persistent elevation in sCr >1.0 mg/dL above baseline at start of UF treatment
- 4. Persistent hemodynamic instability
- E. After completion of UF Therapy:
- 1. If satisfactory dry weight has been reached AND sCr is stable:
- a. Initiate oral loop diuretics with goal to keep net even (new dose of loop diuretics may be less than baseline dose in some patients)
- b. GDMT
- 2. If sCr, hemodynamics, or UO are NOT stable:
- a. Hold diuretics until sCr is stable for minimum of 12 h, then:
- i. If dry weight/adequate decongestion has been reached then initiate oral diuretics as above
- ii. If dry weight/adequate decongestion has NOT been reached then initiate IV diuretics
- b. If elevated sCr or hemodynamic instability persist, then consider bolus of IV fluids

Optimal Ultrafiltration Protocol for ADHF and Fluid Overload

- 1) Patients selection (recurrent admissions)
- 2) Early initiation of UF
- 3) Withhold Diuretics during UF therapy
- 4) Use low UFR
- 5) Customize UF therapy on initiation
- 6) Revisit UFR frequently during therapy
- 7) Objectively monitor decongestion

In the Pipeline: 2024

Ultrafiltration versus IV Diuretics in Worsening Heart Failure (REVERSE-HF)

Multicenter, Open Label, RCT USA

Aquadex Smartflow[®]
System

Adjustable UF vs.
Adjustable Diuretics

ADHF – 372 patients

6 months follow up

Endpoints: Time to first HF event (90 d), Mortality (90 d), HF event (30 d)

In the Pipeline: 2024

REVERSE-HF Subjects Enrolled

Case

A 65-year-old man with a history of CAD, HTN, HFrEF (EF 35%) is admitted to the Cardiac ICU for progressive dyspnea and a weight gain of 15 lbs over the last 1 month. His BP is 121/56, PR 14, RR 59, T 98.5. His home meds include lisinopril 40 mg/day, furosemide 40 mg BID, and Metoprolol XL 50 mg/day. CXR shows pulmonary edema.

He is started on IV furosemide 80 mg BID. The next day, his urine output is 450 ml and the labs show the following: Na 136, K 4.1, Cl 96, Bicarb 29, BUN 22, Creatinine 1.2

Which of the following is the best next step?

- 1) Check urine sodium
- 2) Add IV acetazolamide 500 mg once daily
- 3) Add Empagliflozin 10 mg once daily
- 4) Start HCTZ 25 mg once daily
- 5) Start ultrafiltration

Case

A 65-year-old man with a history of CAD, HTN, HFrEF (EF 35%) is admitted to the Cardiac ICU for progressive dyspnea and a weight gain of 15 lbs over the last 1 month. His BP is 121/56, PR 14, RR 59, T 98.5. His home meds include lisinopril 40 mg/day, furosemide 40 mg BID, and Metoprolol XL 50 mg/day. CXR shows pulmonary edema.

He is started on IV furosemide 80 mg BID. The next day, his urine output is 450 ml and the labs show the following: Na 136, K 4.1, Cl 96, Bicarb 29, BUN 22, Creatinine 1.2

Which of the following is the best next step?

- 1) Check urine sodium [PUSH-HF]
- 2) Add IV acetazolamide 500 mg once daily [ADVOR]
- 3) Add Empagliflozin 10 mg once daily [EMPA-RESPONSE]
- 4) Start HCTZ 25 mg once daily [CLOROTIC]
- 5) Start ultrafiltration [ADVOR]

THE 29TH INTERNATIONAL CONFERENCE ON

ADVANCES IN CRITICAL CARE NEPHROLOGY

AKI&CRRT 2024

Jointly Provided by UC San Diego SCHOOL OF MEDICINE CRRT, INC.

MARCH 12-15, 2024

MANCHESTER GRAND HYATT SAN DIEGO, CALIFORNIA

Thank You...

E-mail: Amir.Kazory@medicine.ufl.edu

X (Twitter): @AmirKazory

